Mathematics - Course 221

THE INTEGRAL

I The Indefinite Integral

If $F^{1}(x)=f(x)$, then $f(x)$ is the derivative of $F(x)$, and $F(x)$ is an antiderivative of $f(x)$. The process of finding $f(x)$ from $F(x)$ is called differentiation, whereas the process of finding $F(x)$ from $f(x)$ is called integration. Thus differentiation and integration are opposite processes:

Example I

$$
x^{2} \text { is an antiderivative of } 2 x \text { since }
$$

$$
\frac{d}{d x} x^{2}=2 x
$$

In fact, any function of the form $F(x)=x^{2}+C$ is an antiderivative of $f(x)=2 x$ since

$$
\frac{d}{d x}\left(x^{2}+c\right)=2 x \quad\left(\frac{d}{d x} c=0\right)
$$

"C" is called an integration constant.

Graphical Significance of Integration Constant

The graphical significance of the integration constant C is that $\mathrm{x}^{2}+\mathrm{C}$ represents a family of curves, each value of C corresponding to a unique member of the family (see Figure 1). Note that every member of the family has precisely the same slope at any particular x-value, say x_{1}.

Figure 1

Boundary Condition

Integration may be regarded as the process of finding a function (curve) from its derivative (slope). As Figure 1 illustrates, there is always an infinite family of curves having the given slope.

An integration has a unique solution, however, if a boundary condition is imposed.

DEFINITION: A boundary condition is the specification of the value of the integral at a particular x-value.

The graphical significance of imposing a boundary condition is that a point is specified on the solution curve, and thus a unique curve is selected from the infinite family as the solution.

Example 2

Find the antiderivative of $f(x)=2 x$, which has the value 5 when $\mathrm{x}=2$.

Solution

The required antiderivative has the form

$$
F(x)=x^{2}+C \quad \text { (from Example } 1 \text {) }
$$

However, the boundary condition,

$$
F(2)=5 \Rightarrow(2)^{2}+C=5
$$

$$
\because c=1
$$

$$
\therefore \quad F(x)=x^{2}+1
$$

Note that the boundary condition in Example 2 selects the curve corresponding to $C=1$ in Figure 1 .

Integral Notation

${ }^{n}$ The integral of $2 x$ with respect to x equals $x^{2}+C "$ is written symbolically as follows:

indefinite integral

Where:

- the integral sign is read "the integral of"
- the integrand is the function being integrated
- the differential "dx" indicates integration wrt x
- the antiderivative and integration constant together comprise the indefinite integral of 2 x wrt x .

In general, the derivative of $F(x)$ wrt x equals $f(x)$ if and only if the integral of $f(x)$ equals $F(x)+C$
ie,

$$
F^{1}(x)=f(x) \Longleftrightarrow f f(x) d x=F(x)+C
$$

Example 3

$$
\int 4 x^{3} d x=x^{4}+c \text { since } \frac{d}{d x}\left(x^{4}+C\right)=4 x^{3}
$$

Displacement, Velocity and Acceleration

$$
\begin{aligned}
& v(t)=s^{1}(t) \Longleftrightarrow s(t)=\int v(t) d t \\
& a(t)=v^{1}(t) \Longleftrightarrow v(t)=\int a(t) d t
\end{aligned}
$$

Example 4
Find $v(t)$ and $s(t)$ given $a(t)=-10$, and the boundary conditions, $v(0)=0$ and $s(0)=100$.

Solution

$$
\begin{aligned}
v(t) & =\int a(t) d t \\
& =\int-10 d t \\
& =-10 t+c_{1}
\end{aligned}
$$

But $\quad v(0)=0 \Rightarrow-10(0)+C_{1}=0$

$$
\therefore \quad c_{1}=0
$$

$$
\therefore \quad v(t)=-10 t
$$

$$
\begin{aligned}
s(t) & =\int v(t) d t \\
& =\int-10 t d t \\
& =-5 t^{2}+c_{2}
\end{aligned}
$$

But $\quad s(0)=100 \Rightarrow-5(0)^{2}+C_{2}=100$

$$
\therefore \quad c_{2}=100
$$

$$
\therefore \quad s(t)=-5 t^{2}+100
$$

III Integration Formulas

The following is a table of integration formulas with corresponding differentiation formulas studied in lesson 221.20-2.

DIFFERENTIATION FORMULA	CORRESPONDING INTEGRATION FORMULA
$\frac{d}{d x} C=0$	$f 0 d x=C$
$\frac{d}{d x} x^{n}=n x^{n-1}$	$f x^{n} d x=\frac{x^{n+1}}{n+1}+c, n \neq-1$
$\frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x} f(x)$	
$\pm \frac{d}{d x} g(x)$	$f(f(x) \pm g(x)) d x=f f(x) d x$
$e^{f(x)}=e^{f(x)} f^{1}(x)$	$f e^{f(x)} f^{1}(x) d x=e^{f(x)}+C$

Example 5

$$
\int x^{20} d x=\frac{x^{21}}{21}+c
$$

Example 6

$$
\begin{aligned}
\int \pi x^{5} d x & =\pi \int x^{5} d x \\
& =\pi\left(\frac{x^{6}}{6}+C\right) \\
& =\frac{\pi}{6} x^{6}+C_{1} \quad\left(C_{1}=\pi C\right)
\end{aligned}
$$

Example 7

$$
\begin{aligned}
\int\left(x^{3}+\sqrt{x}\right) d x & =\int x^{3} d x+\int \sqrt{x} d x \\
& =\frac{x^{4}}{4}+C_{1}+\frac{x^{3 / 2}}{3 / 2}+C_{2} \\
& =\frac{1}{4} x^{4}+\frac{2}{3} x^{3 / 2}+C \quad\left(C=C_{1}+C_{2}\right)
\end{aligned}
$$

Example 8

$$
\begin{aligned}
\int \frac{x^{2}-1}{\sqrt{x}} d x & =\int\left(\frac{x^{2}}{\sqrt{x}}-\frac{1}{\sqrt{x}}\right) d x \\
& =\int\left(x^{3 / 2}-x^{-1 / 2}\right) d x \\
& =\int x^{3 / 2} d x-\int x^{-1 / 2} d x \\
& =\frac{x^{5 / 2}}{5 / 2}+C_{1}-\left(\frac{x^{1 / 2}}{1 / 2}+C_{2}\right) \\
& =\frac{2}{5} x^{5 / 2}+2 \sqrt{x}+c
\end{aligned}
$$

$$
\left\{C=C_{1}-C_{2}\right)
$$

Note that the integrand in this example was expressed in terms of functions of the form x^{n} prior to integration, since no method of integrating a quotient of two functions has been given.

Example 9

$$
\int 2 x e^{x^{2}} d x=e^{x^{2}}+c
$$

Note that this integral is of the form $\int e^{f(x)} f^{1}(x) d x$ where $f(x)=x^{2}$ and $f^{1}(x)=2 x$.

Example 10

$$
\text { If } v(t)=10 e^{-t}+t, \text { find } s(t) \text { assuming } s(0)=0
$$

$$
\begin{aligned}
& s(t)=\int v(t) d t \\
&=\int\left(10 e^{-t}+t\right) d t \\
&=\int 10 e^{-t} d t+\int t d t \\
&=-10 \int e^{-t}(-1) d t+\int t d t \\
&=-10 e^{-t}+\frac{t^{2}}{2}+c \\
& \text { But } s(0)=0 \Rightarrow-10 e^{0}+\frac{0^{2}}{2}+c=0 \\
& i e,-10+c=0 \\
& i e, \\
& s(t)=-10 e^{-t}+\frac{t^{2}}{2}+10
\end{aligned}
$$

Note that "-l0" rather than 10 was factored out of the first integrand in line 4 of this solution so as to leave a factor of (-1) in the integrand, which is of the form $e^{f(t)} f^{1}(t)$ where $f(t)=e^{-t}$ and $f^{1}(t)$ $=-1$.

IV Area Under a Curve
Let $A\left(x_{1}\right)$ represent the area under the curve $y=f(x)$ from $x=a$ to $x=x_{1}$. Then $A\left(x_{1}+\Delta x\right)$ represents the area from $x=a$ to $x=x_{1}+\Delta x$, and $A\left(x_{1}+\Delta x\right)-A\left(x_{1}\right)$ represents the area under the curve between x_{1} and $x_{1}+\Delta x$, as labelled in Figure 2.

Figure 2

Obviously, for some value of x, say $x=z_{2} x_{1} \leq z \leq x_{1}+\Delta x$, the area of the rectangle Δx units wide by $f(z)$ units high exactly equals the area $A\left(x_{1}+\Delta x\right)-A\left(x_{1}\right)$ under the curve,

$$
\begin{aligned}
& \text { ie, } A\left(x_{1}+\Delta x\right)-A\left(x_{1}\right)=f(z) \Delta x \\
& \therefore \frac{A\left(x_{1}+\Delta x\right)-A\left(x_{1}\right)}{\Delta x}=f(z) \\
& \therefore \lim _{\Delta x \rightarrow 0} \frac{A\left(x_{1}+\Delta x\right)-A\left(x_{1}\right)}{\Delta x}=\lim _{\Delta x \rightarrow 0} f(z)
\end{aligned}
$$

The LHS of this equation is the derivative, $A^{2}\left(x_{1}\right)$, by definition (see lesson 221.20-2).

Furthermore as $\Delta x \rightarrow 0, \quad z+x_{1}$ (see Figure 2).

$$
\because \quad A^{2}\left(x_{1}\right)=f\left(x_{1}\right)
$$

Finally, since the value of x_{1} is arbitrary, it can be replaced by the variable x.

Thus

$$
A^{2}(x)=f(x)
$$

ie, the derivative of the area function equals the curve function.

$$
\therefore \quad A(x)=\int f(x) d x=F(x)+C
$$

Example 11
Find the area under the curve $y=5$ from $x=0$ to (a) $x=x_{1}$ (b) $x=1$ (c) $x=10$.

Solution
(a) $A(x)=\int f(x) d x$

$$
=\int 5 \mathrm{dx}
$$

$$
=5 x+c
$$

But $A(0)=0 \Rightarrow 5(0)+C=0$

$$
\begin{array}{rlrl}
& C & =0 \\
& & A\left(x_{1}\right) & =5 x_{1}
\end{array}
$$

(b) $A(1)=5(1)=\frac{5}{\underline{5}}$
(c) $A(10)=5(10)=50$

Note, with reference to Figure 3, that the above areas are rectangular, and that the same answers are obtained by using "area $=$ length x width".

Example 12
Find the area under the curve $y=2 x$ from $x=0$ to (a) $x=x_{1}$ (b) $x=1$ (c) $x=10$.

Solution

$$
\begin{aligned}
A(x) & =\int f(x) d x \\
& =\int 2 x d x \\
& =x^{2}+c
\end{aligned}
$$

But $A(0)=0 \Rightarrow 0^{2}+C=0$

$$
\begin{aligned}
\therefore & C & =0 \\
\therefore & A(x) & =x^{2}
\end{aligned}
$$

(a) . $\quad \underline{A\left(x_{1}\right)=x_{1}^{2}}$

Figure 4
(b) $\quad A(1)=l^{2}=1$
(c) $A(10)=10^{2}=100$

Note, with reference to Figure 4, that the above areas are triangular, and that the same answexs are obtained using "area $=\frac{1}{2}$ base times height".

Example 13
Find the area under the curve $y=x^{2}$ from $x=0$ to (a) $x=5$ (b) $x=10$.

Solution

$$
\begin{aligned}
A(x) & =\int x^{2} d x \\
& =\frac{x^{3}}{3}+C
\end{aligned}
$$

But $A(0)=0 \Rightarrow \frac{0^{3}}{3}+C=0$

$$
\begin{array}{lr}
\therefore \quad C=0 \\
\therefore A(x)=\frac{x^{3}}{3} \\
\end{array}
$$

Figure 5
(a) $A(5)=\frac{125}{3}$
(b) $A(10)=\frac{1000}{3}$

The Definite Integral
The procedure for calculating areas illustrated in examples 11 to 13 above can be 'streamlined' considerably by using the definite integral notation, which effectively 'builds in' the boundary condition.

Recall that the area under the curve $y=f(x)$ from $x=a \operatorname{up}$ to $x=x$ is given by

$$
A(x)=\int f(x) d x=F(x)+C
$$

But $A(a)=0 \Rightarrow F(a)+C=0$

$$
\begin{array}{rlrl}
\therefore & C & =-F(a) \\
& \ddots & A(x) & =F(x)-F(a)
\end{array}
$$

. . the area under the curve between $x=a$ and $x=b$,

$$
A(b)=F(b)-F(a)
$$

The definite integral notation $f_{a}^{b} f(x) d x$ is used to represent $F(b)-F(a)$.
ie,

$$
A(b)=\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

In this notation "a" and "b" are called the lower limit and upper limit, respectively, of the integration.

Examples 11 and 13 will now be redone using definite integrals:

Example 14
Find the area under the curve $y=5$ between $x=0$ and (a) $x=x_{1}$ (b) $x=1$ (c) $x=10$.

Solution
(a) $A\left(x_{1}\right)=\int_{0}^{x_{1}} 5 d x$
$=\left.5 x\right|_{0} ^{x_{1}}$
$=5 x_{1}-5(0)$
$=5 x_{1}$
b
The notation $\left.F(x)\right|_{\text {a }}$ is used above to indicate the explicit form of the antiderivative, which is to be evaluated between the limits a and b.
(b) $A(1)=\int_{0}^{1} 5 d x$
$=\left.5 x\right|_{0} ^{1}$
$=5(1)-5(0)$
$=\frac{5}{=}$
(c) $A(10)=\int_{0}^{10} 5 d x$
$=\left.5 x\right|_{0} ^{10}$
$=5(10)-5(0)$
$=50$

Example 15

Find the area under the curve $y=x^{2}$ from $x=0$ to (a) $x=5$ (b) $x=10$.

Solution

$$
\begin{aligned}
\text { (a) } A(5) & =\int_{0}^{5} x^{2} d x \\
& =\left.\frac{x^{3}}{3}\right|_{0} ^{5} \\
& =\frac{5^{3}}{3}-\frac{0^{3}}{3} \\
& =\frac{125}{3} \\
\text { (b) } A(10) & =f_{0}^{10} x^{2} d x \\
& =\left.\frac{x^{3}}{3}\right|_{0} ^{10} \\
& =\frac{10^{3}}{3}-\frac{0^{3}}{3} \\
& =\frac{1000}{3}
\end{aligned}
$$

ASSIGNMENT

1. Differentiation and integration are opposite processes, yet the derivative is unique whereas the integral is not, in general. Explain why this is so.
2. Why is a boundary condition necessary to obtain a unique solution to an integral? Explain with reference to graphical significance of boundary condition.
3. Evaluate the following indefinite integrals:
(a) $\int-3 x d x$
(b) $\int\left(e^{t}+t^{3}\right) d t$
(c) $\int\left(2 x^{2}+3 x-5\right) d x$
(d) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$
(e) $\int\left(4 x^{3}-\sqrt[3]{x}\right) d x$
(f) $\int\left(2 t e^{-t^{2}}+t^{3 / 2}\right) d t$
4. Find displacement and velocity functions $s(t)$ and $v(t)$, respectively, given acceleration function $a(t)$ and boundary conditions as follows:
(a) $a(t)=0, \quad v(0)=0, \quad s(0)=0$
(b)
$a(t)=2$,
$v(0)=10$,
$s(0)=1.4$
(c) $a(t)=2 t$,
$\mathrm{v}(0)=\mathrm{V}_{0}$,
$s(0)=0$
(d)

$$
a(t)=e^{-t}, \quad v(0)=10, \quad s(0)=-10
$$

5. Find the function which gives the vertical displacement of a projectile relative to ground level, neglecting air resistance. The acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downwards. Assume the projectile is given initial velocity $V_{0} \mathrm{~m} / \mathrm{s}$ vertically upwards from ground level.
6. Find the area under the curve $y=f(x)$ between a and b where
(a) $f(x)=2 x$,
$a=1$,
$b=10$
(b) $f(x)=\sqrt{x}$,
$a=4$,
$b=16$
(c) $f(x)=x^{2}+4, \quad a=-2$,
$b=5$
(d) $f(x)=x e^{-x^{2}}, \quad a=0$,
$\mathrm{b}=2$
7. Evaluate the following definite integrals:
(a) $\int_{1}^{f^{9}} \sqrt{x}(x-1) d x$
(b) $\int_{5}^{0}(-5 x+3) d x$
(c) $\int_{0}^{2}\left(10+t-e^{t}\right) d t$
